Evaluating New Technology

A Risk Assessment Problem

Presented by:

Curtis Wardhaugh, P. E.

Medalist systems & engineering Boise, idaho

Production Cost Hierarchy

TODAY

- Materials
- Overhead
- Direct Labor
- Transportation
- Energy

FUTURE

- Materials
- Energy
- Direct Labor
- Overhead
- Transportation

The Risk Assessment Model

SAFETY

- Target parameter to be protected
- Tolerance acceptable risk limit
- Foreseeable Hazards
- Assess Risk –probablility x severity
- Resolution

TECHNOLOGY

- Required Function
- Variance in Functional requirements
- FMEA/FTA
- Evaluate via DecisionMatrix
- Resolution

PERSPECTIVE TABLE

CROSS FUNCTIONAL TEAM

Must have a team to remove skewed perspectives:

- DEVELOP DECISION MATRIX Why?
 - filter out personal predjudices.
 - Can't rely solely on "intuition" of engineers.
 - Develop function variants and respective weighting factors to be agreed upon by the team.
 - Each team member has equal say
- LEADERSHIP Facilitator, not "My ideas are best"

TEAM - PARTNERSHIPS

- Minimize risk by developing partnerships or alliances
- Could be technology specific
- Expertise could come from other industry
- Pilot Plants help absorb cost & gather process & operations data
- Universities/Technical Institutions UC Davis, USU

HOWEVER – "YOU MUST DRIVE THE DEVELOPMENT PROCESS"

e.g. DFA/Stork Food & Dairy Systems; Hormel/Asep-Tech USA

Developing "THE TARGET"

- Requirements List:
 - Concept demands (must, shall) and wishes (should, may)
 - Embodiment concrete, quantitative
- Explicitly Define Expected Benefits must have an in-depth understanding of existing technology as a baseline metric.
- Recognize Lifecycle Cost vs Development Cycle
- ROI/Operating Cost should be considered as a functional requirement.

Objective Tree

Evaluation Methods

- Delphi Method:
 - Industry experts are engaged to provide written opinions. (Partnerships)
- Selection/Rating Methods
 - Economic Criteria
 - Technical Criteria
 - Weighting the Evaluation Criteria IMPORTANT
- "Search for Weak Spots" indicated by an unbalanced value profile.

Variant Analysis-The Decision Matrix

	Evaluation criteria		Parameters			Variant V ₁	Weighted		Variant V_2	Weighted		Variant V ₃	Weighted		Variant V ₄	Weighted
No.		Wt.		Unit	Magn.	Value V _{/1}	value wv. ₁	Magn m _{i2}	Value V ₂	value wv _{/2}	Magn. m _{r3}	Value V ₃	value wv _{ii}	Magn m ₁₄	Value V _{i4}	value wv,4
1	Low wear of moving parts	0.056	Amount of wear	-	high	3	0.168	low	6	0.336	average	4	0.224	low	6	0.336
2	Low susceptibility to vibrations	0.14	Natural frequency	s 1	410	3	0.420	2370	7	0.980	2370	7	0.980	< 410	2	0.280
3	Few disturbing factors	0.084	Disturbing factors	-	high	Z	0.168	low	7	0.588	low	6	0.504	(average)	4	0.336
4	Tolerance of overloading	0.12	Overload reserve	%	5	5	0.600	10	7	0.840	10	7	0.840	20	8	0.960
5	High mechanical safety	0.21	Expected mechan. safety	-	average	4	0.840	high	7	1.470	high	7	1.470	very high	8	1.680
6	Few possible operator errors	0.09	Possibilities of operator errors	-	high	3	0.270	low	7	0.630	low	6	0.540	average	4	0.360
7	Small number of components	0.03	No. of components	-	average	5	0.150	average	4	0.120	average	4	0.120	low	6	0.180
8	Low complexity of components	0.012	Complexity of components	-	low	6	0.072	low	7	0.084	average	5	0.060	high	3	0.036
9	Many standard and bought-out parts	0.018	Proportion of standard and bought-out components	-	low	2	0.036	average	6	0.108	average	6	0.108	high	8	0.144
10	Simple assembly	0.04	Simplicity of assembly		low	3	0.120	average	5	0.200	average	5	0.200	high	7	0.280
11	Easy maintenance	0.06	Time and cost or maintenance	100	average	4	0.240	low	8	0.480	low	7	0.420	high	3	0.180
12	Quick exchange of test connections	0.084	Estimated time needed to exchange test connections	min	180	4	0.336	120	7	0.588	120	7	0.588	180	4	0.336
13	Good accessibility of measuring systems	0.056	Accessibility of measuring systems	-	good	7	0.392	good	7	0.392	good	7	0.392	average	5	0.280
		$\Sigma w_i = 1.0$				OV ₁ =51	$0WV_1 = 3.812$		OV ₂ =85	OWV ₂ = 6.816		$OV_3 = 78$	OWV ₃ = 6.446		OV ₄ =68	0WV ₄ = 5.388
		1.0				$R_1 = 0.39$	$WR_1 = 0.38$		$R_2 = 0.65$	$WR_2 = 0.68$		$R_3 = 0.60$	$WR_3 = 0.64$		$R_4 = 0.52$	$WR_4 = 0.54$

Evaluation Rating

FMEA/FTA

- FMEA:
 - What are the effects of failure?
 - How can we quantify the effects? (\$, downtime, waste, lost efficiency, etc.)
- FTA:
 - Assume faults and identify conditions that would cause that event.
 - Revise requirements list to remove flaws.
- Engineering Models
- Testing/Pilot Facilities obtain real, scalable data for:
 - Development of failure probabilities.
 - Develop basis for production rates.
 - Develop energy models; efficiency, consumption, waste, for full scale system

FMEA CHART

KT	Failure Mode an Design (product	Failure Mode and Effect Analysis Design (product)–FMEA ⊠ Process-FMEA □							Component name						
TU-Berlin	Name! Department/ Supplier/ Telephone								Cylindrical cam						
Failure	Institute for Machine Desi		By (Name/ Department/ Telephone) Mr Wende												
location/characteristic	Failure	Failure consequence	Failure cause	Current situation					Suggested remedial	Improved situation					
	type			Proposed test steps	0	S	D	RN	measures	Applied	To	Is	D	T RN	
Shaft	Shaft fracture	Complete breakdown	Type of loading not identified correctly		3	10	10	300	Determine loading using suitable calculations	Proof of strength of the shaft	1	+	10	-	
Bearing	Play in bearing assembly	Imprecise function fulfilment	Slacking of shaft nut during operation (impulse loading)		3	8	10	240	Additional locking of the shaft nut	or mo unan	1	8	10	80	
	Sealing leakage	Early wear of bearings	Sealing not as required		2	5	10	100	Use of radial shaft seals recommended by DIN		1	5	10	50	
Shaft-hub-connection (flange-bolt connection)	Insufficient frictional fit	Shear stress in bolts	Layout error (friction values neglected)		2	6	10	120	Application of a sufficiently high safety factor		1	6	10	60	
connection)	Precision of fittings	Joining not possible or centring insufficient	Design fault		2	5	1	10	Check tolerance calculation		1	5	1	5	
	Failure of bolts	Complete breakdown	Type of loading not identified correctly		3	10	10	300	Suitable calculation for loading situation	Appropriate bolt	1	10	10	100	
Cylindrical cam	Surface pressure too high	Pitting in the running surface	Lever pressure on surface too high		7	8	10	560	Suitable combination of materials and adapted geometry	unitensions	2	8	10	160	

O: Occurrence	S: Significance	D: Detection	RN: Risk number
Probability of occurrence (failure can exist)	Effect on customers	Probability of detection (before delivery to customers)	
very low = 1 medium low = 2-3 medium = 4-6 medium high = 7-8	effects hardly noticeable = 1 failures not important (little trouble to the customer) = 2-3 reasonably serious failure = 4-6 serious failure (annoying for the customer) = 7-8	high = 1 medium high = 2-5 medium = 6-8 medium = 6-8	high = 1000 medium = 125 no risk = 1

Technology Readiness

- Can the Technology be implemented w/ existing support processes?
- Are critical parameters that control the process be identified? (functional dependence/independence)
- Are the safe operating latitude and sensitivity of the parameters known?
- Have the failure modes been identified?
- Does hardware exist that demonstrates positive answers to the above four questions? (lab models, similar designs, pilot plants, etc.)
- Is the technology controllable throughout the lifecycle? (by-products, waste management, process degradation, etc.)

Rules of Thumb

- Simplicity The most simple device/system embodiment that fulfills the functional requirements will always be the most efficient and reliable. (the "KISS" principle)
- Design to Standards (FDA, USDA, AIB, etc.) as a MINIMUM
- In order to effectively evaluate design variants using these techniques, each must be at an equal level of design detail.
- Entropy (Disorganization) Should Always be Minimized This is an organizational "attitude".
 - Thermal systems "second law efficiency" is maximized.
 - Other systems: minimize #of movements pertains to workflow and organization.

SUMMARY

- Minimize risk of loss (production, efficiency, etc.) by use of a systematic approach to the evaluation process.
- Risk is minimized by carefully weighting the functional requirements – Using real data to develop weighting factors.
- The Process is iterative based on knowledge and level of detail.
- Develop failure probablities by modeling (FMEA) and Testing (Pilot/Lab)
- Decisions are based on a systematic, logical and well documented method.